When Power MOSFETs fail, there is often extensive damage. Examination of the size and location of the burn mark, the failure signature, provides information about the type of fault condition which caused the failure. This document provides a catalogue of failure signatures from common electrical overstress failure modes. The catalogue can be used in forensic investigation of the underlying root cause of failure to improve module design and reliability.
1 Introduction

Power MOSFETs are used to switch high voltages and currents, while minimizing their own internal power dissipation. Under fault conditions however, it is possible to apply voltage, current and power exceeding the MOSFET capability. Fault conditions can be either due to an electrical circuit failure or a mechanical fault with a load such as a seized motor. This leads to Electrical Overstress (EOS). Typically the consequence of EOS is the short circuiting of at least 2 of the 3 MOSFET terminals (gate, drain, source). In addition, high local power dissipation in the MOSFET leads to MOSFET damage which manifests as burn marks, die crack and in extreme cases as plastic encapsulation damage.

Examination of the size and location of the burn mark, the failure signature, provides information about the type of fault condition which caused the failure. Common fault conditions are:

- ElectroStatic Discharge (ESD)
- Unclamped Inductive Switching (UIS) - commonly called Avalanche or Ruggedness
- Linear Mode operation
- Over-current

Packaged MOSFETs have been deliberately destroyed under these conditions. Images recorded of the ensuing burn marks on the silicon surface, provide a ‘Rogue’s Gallery’ to aid the explanation of EOS failures.

Section 1.1 to Section 1.4 gives an overview of the common failure signatures.

Appendices in Section 2.1 to Section 2.17 provide further images.
1.1 ESD - Human body model

1.1.1 EOS method

ESD pulses were applied using a standard Human-body Model ESD circuit; for details see AEC - Q101 - REV - May 15, 1996. Voltage of the applied pulse was progressively increased until device failure was observed.

![Typical circuit for Human body Model ESD simulation](image)

Figure 1. Typical circuit for Human body Model ESD simulation

1.1.2 Fault condition simulated

Human body model ESD simulates situations when a voltage spike is applied to the MOSFET exceeding the maximum voltage that can be sustained by the gate oxide of either gate-source or gate-drain. The pulse is applied with 1500 Ω series resistance between the voltage origin and the MOSFET, which limits the rate of rise of the MOSFET gate voltage. Either human handling, electrical test equipment or malfunctioning circuits can easily apply such voltage pulses.

1.1.3 Signature

Failure site is found in an edge cell of the MOSFET structure. Outer edge cells and cells near the gate are the first to be subjected to the incoming voltage pulse and are thus the first sites where the voltage exceeds the gate-oxide capability. The signature differs from Machine Model failures in that the fail site does not show such a strong tendency to group near the gate, due to the slower rise in gate voltage.
<table>
<thead>
<tr>
<th>Device name</th>
<th>Cell pitch (μm)</th>
<th>Image</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUK9508-55A</td>
<td>9 (hexagon)</td>
<td></td>
<td>Fail site is gate oxide of edge cell; see Section 2.1 "Human body model EOS of BUK9508-55A" for further images</td>
</tr>
<tr>
<td>BUK9Y40-55B</td>
<td>4 (stripe)</td>
<td></td>
<td>Fail site is gate oxide of edge cell; see Section 2.2 "Human body model EOS of BUK9Y40-55B" for further images</td>
</tr>
<tr>
<td>PSMN011-30YL</td>
<td>2 (stripe)</td>
<td></td>
<td>Fail site is gate oxide of edge cell; see Section 2.3 "Human body model EOS of PSMN011-30YL" for further images</td>
</tr>
<tr>
<td>Device name</td>
<td>Cell pitch (µm)</td>
<td>Image</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>PSMN8R5-100PSF</td>
<td>2.5 (stripe)</td>
<td></td>
<td>Fail site is gate oxide of edge cell, see Section 2.4 "Human body model EOS of PSMN8R5-100PSF" for further images.</td>
</tr>
<tr>
<td>BUK7Y3R0-40H</td>
<td>1.5 (stripe)</td>
<td></td>
<td>Fail site is gate oxide of edge cell, see Section 2.5 "Human body model EOS of BUK7Y3R0-40H" for further images.</td>
</tr>
</tbody>
</table>
1.2 Unclamped Inductive Switching (UIS) (Avalanche or Ruggedness)

1.2.1 EOS method

Inductive energy pulses were applied using a standard UIS circuit; for details see AEC - Q101-004 - REV - May 15, 1996. A fixed inductance value is selected. Current in the inductor prior to switching the MOSFET was progressively increased until device failure was observed.

Table 2. UIS ruggedness test circuit and waveforms

Table 2. UIS ruggedness test circuit and waveforms

1.2.2 Fault condition simulated

UIS simulates situations when a MOSFET is switched off in a circuit in which there is inductance. The inductance can be deliberate (such as an injector coil in a diesel engine system), or parasitic. As the current cannot decay to zero instantaneously through the inductance, the MOSFET source-drain voltage increases to take the device into avalanche breakdown. The energy stored in the inductance is then dissipated in the MOSFET.

1.2.3 Signature

Failure site is found in an active MOSFET cell. The burn-mark is usually round in shape, indicating a central failure site and subsequent thermal damage.

If the avalanche event is long in duration (~ ms), then burn marks locate at central sites on the die, where there is maximum current flow and reduced heat dissipation. The sites are often adjacent to wire bonds/clip bonds where current density is high, but not directly under the wire bond/clip bond as it provides a local heat sink. Failure is at the hottest location of the die. For short avalanche events

For short avalanche events (~ μs), the burn marks can take on more random locations over the die surface. The temperature rise in the chip is more uniform with negligible chance for current crowding and local heating on these time scales. For even shorter avalanche events, the burn marks can locate at die corners due to the discontinuity in cell structure at these locations.
<table>
<thead>
<tr>
<th>Device name</th>
<th>Cell pitch (µm)</th>
<th>Image</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUK7L06-34ARC</td>
<td>9 (hexagon)</td>
<td></td>
<td>round burn in active area; see Section 2.6 “Unclamped inductive switching EOS of BUK7L06-34ARC” for further images</td>
</tr>
<tr>
<td>BUK9Y40-55B</td>
<td>4 (stripe)</td>
<td></td>
<td>round burn in active area; see Section 2.7 “Unclamped Inductive Switching EOS of BUK9Y40-55B” for further images</td>
</tr>
<tr>
<td>PSMN7R0-30YL</td>
<td>2 (stripe)</td>
<td></td>
<td>round burn in active area; see Section 2.8 “Unclamped inductive switching EOS of PSMN7R0-30YL” for further images</td>
</tr>
<tr>
<td>Device name</td>
<td>Cell pitch (μm)</td>
<td>Image</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PSMN8R5-100PSF</td>
<td>2.5 (stripe)</td>
<td></td>
<td>Round burn in active area; see Section 2.9 "Unclamped inductive switching EOS of PSMN8R5-100PSF" for further images.</td>
</tr>
<tr>
<td>BUK7Y3R0-40H</td>
<td>1.5 (stripe)</td>
<td></td>
<td>Round burn in active area; see Section 2.10 "Unclamped inductive switching EOS of BUK7Y3R0-40H" for further images.</td>
</tr>
</tbody>
</table>
1.3 Linear mode operation

1.3.1 EOS method

A Safe Operating Area (SOA) graph is included in all power MOSFET data sheets. Outside the defined safe region, the power dissipated in the FET cannot be removed, resulting in heating beyond the device capability and then device failure.

MOSFETs were taken and a fixed source-drain voltage applied. Current pulses of defined duration were applied and the current was increased until MOSFET failure was observed.

![SOA graph](image)

Figure 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

1.3.2 Fault condition simulated

Linear mode operation is common during device switching or clamped inductive switching and is not a fault condition unless the SOA is exceeded. Linear mode EOS simulates situations when a MOSFET is operated in Linear mode for too long. This situation can also occur if, when intending to turn the FET on, the gate signal voltage to the FET is too low. This condition can also arise when intending to hold the FET in the Off-state with high drain-source voltage. If the gate connection is lost, the gate voltage capacitively rises and the same Linear mode fault condition occurs.

1.3.3 Signature

The hottest location of the die is a failure site that is usually at central sites on the die. The center of the die is where there is maximum current flow and reduced heat dissipation. The sites are often adjacent to wire bonds/clip bonds where current density is high, but not directly under the wire bond/clip bond as it provides a local heat sink.
Table 4. Examples of linear mode failure signature

<table>
<thead>
<tr>
<th>Device name</th>
<th>Cell pitch (µm)</th>
<th>Image</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUK7L06-34ARC</td>
<td>9 (hexagon)</td>
<td></td>
<td>Burns located in center of die adjacent to wire-bonds; see Section 2.11 “Linear mode EOS of BUK7L06-34ARC” for further images</td>
</tr>
<tr>
<td>BUK9Y40-55B</td>
<td>4 (stripe)</td>
<td></td>
<td>Burn adjacent to location of clip bond in center of die; see Section 2.12 “Linear mode EOS of BUK9Y40-55B” for further images</td>
</tr>
<tr>
<td>Device name</td>
<td>Cell pitch (μm)</td>
<td>Image</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PSMN7R0-30YL</td>
<td>2 (stripe)</td>
<td>Burn adjacent to location of clip bond in center of die; see Section 2.13 “Linear mode EOS of PSMN7R0-30YL” for further images</td>
<td></td>
</tr>
<tr>
<td>Device name</td>
<td>Cell pitch (µm)</td>
<td>Image</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PSMN8R5-100PSF</td>
<td>2.5 (stripe)</td>
<td>.jpg</td>
<td>Burn between source bond wires in active area, see Section 2.18 "Linear mode EOS of PSMN8R5-100PSF" for further images.</td>
</tr>
<tr>
<td>BUK7Y3R0-40H</td>
<td>1.5 (stripe)</td>
<td>.jpg</td>
<td>Burn close to the source clip location in the active area, see Section 2.19 "Linear mode EOS of BUK7Y3R0-40H" for further images.</td>
</tr>
</tbody>
</table>
1.4 Over-current

1.4.1 EOS method

The maximum current-handling capability is specified on the data sheet for Power MOSFETs. This capability is based on the current handling capability of wires or clips, before which fusing will onset, combined with the ability to dissipate heat. Exceeding this rating can result in catastrophic failure.

\[
I_D = 53 \text{ A} \quad \text{for} \quad V_{GS} = 10 \text{ V; } T_{mb} = 100 \degree \text{C; see Figure 1}
\]

\[
I_D = 76 \text{ A} \quad \text{for} \quad V_{GS} = 10 \text{ V; } T_{mb} = 25 \degree \text{C; see Figure 1}
\]

\[
I_{Dm} = 260 \text{ A} \quad \text{for} \quad t_p \leq 10 \mu\text{s; pulsed; } T_{mb} = 25 \degree \text{C; see Figure 3}
\]

Figure 5. Example of maximum current rating from the data sheet of PSMN7R0-30YL

1.4.2 Fault condition simulated

Over-current occurs if a FET is turned on with no element in the circuit to limit the current, resulting in a supply voltage being applied fully over the drain-source terminals of the FET. Typically this occurs if a load has been short-circuited. Alternatively if 2 FETs are operating in a half-bridge, over-current can ensue if both are turned on together.

1.4.3 Signature

Failure site is initially where the current handling connections (wires or clips) meet the die. Normally damage is extensive however in over-current conditions, and spreads over the entire die surface with evidence of melted metallization and solder joints.

For wire-bonded packages, there is often evidence of fused wires. For clip-bonded packages, die crack is commonly observed.
Table 5. Examples of over-current failure signature

<table>
<thead>
<tr>
<th>Device name</th>
<th>Cell pitch (μm)</th>
<th>Image</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUK7L06-34ARC</td>
<td>9 (hexagon)</td>
<td></td>
<td>Burns located in center of die adjacent to wire-bonds. Secondary damage of remelted top metal and solder die attach; see Section 2.14 “Over-current EOS of BUK7L06-34ARC” for further images</td>
</tr>
<tr>
<td>PSMN7R0-30YL</td>
<td>2 (stripe)</td>
<td></td>
<td>Burn adjacent to location of clip bond in center of die; see Section 2.15 “Over-current EOS of PSMN7R0-30YL” for further images</td>
</tr>
</tbody>
</table>
2 Appendices

2.1 Human Body Model EOS of BUK9508-55A

Table 6. Human body model EOS

<table>
<thead>
<tr>
<th>BUK9508-55A</th>
<th>Cell structure: 9 mm hexagons</th>
<th>Package: TO-220</th>
<th>Die size: 5.5 mm x 4.5 mm</th>
<th>EOS condition: 5 kV HBM pulse</th>
</tr>
</thead>
</table>

Fails located in edge cells, distributed around edge of device

Figure 6. Sample image 4; after Al removal

Figure 7. Sample image 4; after Al removal, close-up
Figure 8. Sample image 19; after Al removal

Figure 9. Sample image 19; after TEOS removal, close-up
2.2 Human Body Model EOS of BUK9Y40-55B

Table 7. Human body model EOS

BUK9Y40-55B

<table>
<thead>
<tr>
<th>Cell structure:</th>
<th>4 μm stripe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.5 mm x 1.35 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>450 V to 650 V HBM pulse</td>
</tr>
</tbody>
</table>

Fails located randomly over die with increased grouping in edge cells. Some fails subjected to ATE testing to create additional damage to highlight fail site.

Figure 10. Sample image 5; after Al removals

Figure 11. Sample image 5; after TEOS removal, close-up
2.3 Human Body Model EOS of PSMN011-30YL

Table 8. Human body model EOS

<table>
<thead>
<tr>
<th>PSMN011-30YL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>2 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>1.7 mm x 1.2 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>200 V to 210 V HBM pulse</td>
</tr>
</tbody>
</table>

Fails located in edge cells

Figure 12. Sample image 2; after Al removal
Figure 13. Sample image 4; after Al removal
2.4 Human Body Model EOS of PSMN8R5-100PSF

Table 9. Human body model EOS

<table>
<thead>
<tr>
<th>PSMN8R5-100PSF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>2.5 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>SOT78</td>
</tr>
<tr>
<td>Die size:</td>
<td>4 mm x 2.67 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>1.4 kV to 1.8 kV HBM pulse</td>
</tr>
</tbody>
</table>
Figure 16. Device 4 after Al removal

Figure 17. Device 7 after Al removal

Figure 18. Device 5 after TEOS removal

Figure 19. Device 10 following decapsulation
2.5 Human Body Model EOS of BUK7Y3R0-40H

Table 10. Human body model EOS

<table>
<thead>
<tr>
<th>BUK7Y3R0-40H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure</td>
<td>1.5 μm stripe</td>
</tr>
<tr>
<td>Package</td>
<td>SOT669</td>
</tr>
<tr>
<td>Die size</td>
<td>2.65 mm x 2.15 mm</td>
</tr>
<tr>
<td>EOS condition</td>
<td>2 kV HBM pulse</td>
</tr>
</tbody>
</table>

Figure 20. Device 2 after Al, barrier and TEOS etch

Figure 21. Device 3 after Al, barrier and TEOS etch
Figure 22. Device 4 after Al, barrier and TEOS etch
2.6 Unclamped Inductive Switching EOS of BUK7L06-34ARC

Table 11. Unclamped inductive switching EOS

| BUK7L06-34ARC | Cell structure: 9 mm hexagons | Package: TO-220 (clip bond) | Die size: 4.3 mm x 4.3 mm | EOS condition: 0.2 mH; 80 A to 110 A | Small round burn marks, randomly distributed over active area, close to but not directly under wire-bonds |

Figure 23. Sample image 1
Figure 24. Sample image 2
Figure 25. Sample image 3
Figure 26. Sample image 4
2.7 Unclamped Inductive Switching EOS of BUK9Y40-55B

Table 12. Unclamped inductive switching EOS

<table>
<thead>
<tr>
<th>BUK9Y40-55B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>4 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.5 mm x 1.35 mm</td>
</tr>
</tbody>
</table>
| **EOS condition:** | Red dots: 0.1 mH, 76 A to 80 A
Yellow dots: 15 mH, 7 A to 9 A |

Small round burn marks, randomly distributed over active area, close to but not directly under clip bond

Figure 27. Sample image 41; 0.1 mH

Figure 28. Sample image 43; 0.1 mH
Figure 29. Sample image 51; 15 mH

Figure 30. Sample image 55; 15 mH
2.8 Unclamped Inductive Switching EOS of PSMN7R0-30YL

Table 13. Unclamped inductive switching EOS

<table>
<thead>
<tr>
<th>PSMN7R0-30YL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure: 2 μm stripe</td>
</tr>
<tr>
<td>Package: LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size: 2.5 mm x 1.35 mm</td>
</tr>
<tr>
<td>EOS condition: Red dots: 0.1 mH, 48 A to 51 A</td>
</tr>
<tr>
<td>Yellow dots: 3.5 mH, 16 A to 18 A</td>
</tr>
</tbody>
</table>

Small round burn marks, randomly distributed over active area, close to but not directly under clip bond

Figure 31. Sample image 6; 0.1 mH

Figure 32. Sample image 8; 0.1 mH
2.9 Unclamped Inductive Switching EOS of PSMN8R5-100PSF

Table 14. Unclamped inductive switching EOS

<table>
<thead>
<tr>
<th>PSMN8R5-100PSF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>2.5 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>SOT78</td>
</tr>
<tr>
<td>Die size:</td>
<td>4 mm x 2.67 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>Teal dot – 25 mH</td>
</tr>
<tr>
<td></td>
<td>Orange dot – 100 μH</td>
</tr>
</tbody>
</table>
Figure 35. Device 1 upper (orange) hotspot

Figure 36. Device 1 lower (orange) hotspot

Figure 37. Device 4 upper (orange) hotspot

Figure 38. Device 4 lower (orange) hotspot
Figure 39. Device 6 (teal) hotspot

Figure 40. Device 7 (teal) hotspot

Figure 41. Device 8 (teal) hotspot

Figure 42. Device 9 (teal) hotspot
2.10 Unclamped Inductive Switching EOS of BUK7Y3R0-40H

Table 15. Unclamped inductive switching EOS

| BUK7Y3R0-40H | |
|--------------|--|---|
| Cell structure: | 1.5 μm stripe |
| Package: | SOT669 |
| Die size: | 2.65 mm x 2.15 mm |

Figure 43. Device 1

Figure 44. Device 2
Figure 45. Device 3
2.11 Linear mode EOS of BUK7L06-34ARC

Table 16. Linear mode EOS

<table>
<thead>
<tr>
<th>BUK7L06-34ARC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
</tr>
<tr>
<td>Package:</td>
</tr>
<tr>
<td>Die size:</td>
</tr>
<tr>
<td>EOS condition:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 46. Sample image 1: 15 V, 3 A

Figure 47. Sample image 2: 15 V, 3 A

Figure 48. Sample image 3: 15 V, 3 A

Figure 49. Sample image 4: 15 V, 3 A
Failure signature of electrical overstress on power MOSFETs

Figure 50. Sample image 1: 30 V, 1.5 A

Figure 51. Sample image 2: 30 V, 1.5 A

Figure 52. Sample image 3: 30 V, 1.5 A

Figure 53. Sample image 4: 30 V, 1.5 A
2.12 Linear mode EOS of BUK9Y40-55B

Table 17. Linear mode EOS

<table>
<thead>
<tr>
<th>BUK9Y40-55B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>4 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.5 mm x 1.35 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>20 V, 3.5 A, 30 ms</td>
</tr>
<tr>
<td></td>
<td>20 V, 3 A, 60 ms</td>
</tr>
<tr>
<td></td>
<td>30 V, 1.4 A, 60 ms</td>
</tr>
</tbody>
</table>

Burn marks in center of die, adjacent but not directly under clip bond – can cause die cracking

Figure 54. Sample image 61; 20 V, 3.5 A, 30 ms

Figure 55. Sample image 62; 20 V, 3.5 A, 30 ms
Figure 56. Sample image 63; 20 V, 3.5 A, 30 ms

Figure 57. Sample image 64; 20 V, 3.5 A, 30 ms

Figure 58. Sample image 66; 20 V, 3 A, 60 ms

Figure 59. Sample image 67; 20 V, 3 A, 60 ms
Figure 60. Sample image 68; 20 V, 3 A, 60 ms

Figure 61. Sample image 69; 20 V, 3 A, 60 ms

Figure 62. Sample image 71; 30 V, 1.4 A, 60 ms

Figure 63. Sample image 72; 30 V, 1.4 A, 60 ms

Figure 64. Sample image 73; 30 V, 1.4 A, 60 ms

Figure 65. Sample image 74; 30 V, 1.4 A, 60 ms
2.13 Linear mode EOS of PSMN7R0-30YL

Table 18. Linear mode EOS

<table>
<thead>
<tr>
<th>PSMN7R0-30YL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>2 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.3 mm x 1.35 mm</td>
</tr>
</tbody>
</table>
| **EOS condition:** | 0.1 mH, 48 A to 51 A
| | 3.5 mH, 16 A to 18 A |

Figure 66. Sample image 1; 15 V, 2.5 A, 100 ms

Figure 67. Sample image 2; 15 V, 2.5 A, 100 ms
Figure 68. Sample image 4; 15 V, 2.5 A, 100 ms

Figure 69. Sample image 5; 15 V, 2.5 A, 100 ms

Figure 70. Sample image 11; 15 V, 5 A, 1 ms

Figure 71. Sample image 12; 15 V, 5 A, 1 ms
2.14 Linear mode EOS of PSMN8R5-100PSF

Table 19. Linear mode EOS

<table>
<thead>
<tr>
<th></th>
<th>PSMN8R5-100PSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>2.5 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>SOT78</td>
</tr>
<tr>
<td>Die size:</td>
<td>4 mm x 2.67 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>Teal dot – 50 V 10 ms pulse length</td>
</tr>
<tr>
<td></td>
<td>Orange dot – 70 V, 1 ms pulse length</td>
</tr>
</tbody>
</table>
Figure 74. Device 5 upper (orange) hotspot

Figure 75. Device 6 lower (orange) hotspot

Figure 76. Device 7 upper (orange) hotspot

Figure 77. Device 8 lower (orange) hotspot
Failure signature of electrical overstress on power MOSFETs

Figure 78. Device 1 (teal) hotspot

Figure 79. Device 2 (teal) hotspot

Figure 80. Device 3 (teal) hotspot

Figure 81. Device 4 (teal) hotspot
2.15 Linear mode EOS of BUK7Y3R0-40H

Table 20. Linear mode EOS

<table>
<thead>
<tr>
<th>BUK7Y3R0-40H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell structure:</td>
<td>1.5 μm stripe</td>
</tr>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.3 mm x 1.35 mm</td>
</tr>
<tr>
<td>EOS condition:</td>
<td>0.1 mH, 48 A to 51 A</td>
</tr>
<tr>
<td></td>
<td>3.5 mH, 16 A to 18 A</td>
</tr>
</tbody>
</table>

![Sample image 1: 15 V, 2.5 A, 100 ms](image1)

![Sample image 2: 15 V, 2.5 A, 100 ms](image2)

Burn marks in center of die, adjacent but not directly under clip bond.

Figure 82. Sample image 1; 15 V, 2.5 A, 100 ms

Figure 83. Sample image 2; 15 V, 2.5 A, 100 ms
Figure 84. Sample image 4; 15 V, 2.5 A, 100 ms
2.16 Over-current EOS of BUK7L06-34ARC

Table 21. Over-current EOS

<table>
<thead>
<tr>
<th>BUK7L06-34ARC</th>
<th>Cell structure:</th>
<th>Package:</th>
<th>Die size:</th>
<th>EOS condition:</th>
<th>Extensive damage starting from die where wire bonds meet die.</th>
<th>Secondary damage of reflowed solder and even fused wires are visible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 mm hexagon</td>
<td>TO-220 (clip bond)</td>
<td>4.3 mm x 4.3 mm</td>
<td>120 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 85. Sample image 1](aaa-004955)

![Figure 86. Sample image 2](aaa-004960)

![Figure 87. Sample image 3](aaa-004961)

![Figure 88. Sample image 4](aaa-004962)
2.17 Over-current EOS of PSMN7R0-30YL

Table 22. Over-current EOS

<table>
<thead>
<tr>
<th>Cell structure:</th>
<th>2 μm stripe</th>
<th>Burn marks in center of die, adjacent but not directly under clip bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package:</td>
<td>LFPAK (clip bond)</td>
<td>Some evidence of die-cracking.</td>
</tr>
<tr>
<td>Die size:</td>
<td>2.3 mm x 1.35 mm</td>
<td></td>
</tr>
<tr>
<td>EOS condition:</td>
<td>35 A, 35 ms</td>
<td></td>
</tr>
</tbody>
</table>

Figure 89. Sample image 6

Figure 90. Sample image 7

Figure 91. Sample image 8

Figure 92. Sample image 9
3 Abbreviations

Table 23. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOS</td>
<td>Electrical Overstress</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>UIS</td>
<td>Unclamped Inductive Switching</td>
</tr>
</tbody>
</table>

4 Revision history

Table 24. Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>20171219</td>
<td>superseeds Rev 01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modifications:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section ESD - Machine model removed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional EOS example added</td>
</tr>
<tr>
<td>01</td>
<td>20121029</td>
<td>first issue</td>
</tr>
</tbody>
</table>
5 Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, cost or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

5.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Tables

Tab. 1. Examples of Human Body Model ESD failure signature .. 4
Tab. 2. UIS ruggedness test circuit and waveforms ... 6
Tab. 3. Examples of Unclamped Inductive Switching failure signature 7
Tab. 4. Examples of linear mode failure signature ... 10
Tab. 5. Examples of over-current failure signature .. 14
Tab. 6. Human body model EOS .. 15
Tab. 7. Human body model EOS .. 17
Tab. 8. Human body model EOS .. 18
Tab. 9. Human body model EOS .. 19
Tab. 10. Human body model EOS ... 21
Tab. 11. Unclamped inductive switching EOS ... 23

Figures

Fig. 1. Typical circuit for Human body Model ESD simulation .. 3
Fig. 2. Circuit diagram for UIS ruggedness test ... 6
Fig. 3. Waveforms obtained from UIS test .. 9
Fig. 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage .. 13
Fig. 5. Example of maximum current rating from the data sheet of PSMN7R0-30YL 15
Fig. 6. Sample image 4; after Al removal ... 15
Fig. 7. Sample image 4; after Al removal, close-up ... 15
Fig. 8. Sample image 19; after Al removal ... 16
Fig. 9. Sample image 19; after TEOS removal, close-up .. 16
Fig. 10. Sample image 5; after Al removals .. 17
Fig. 11. Sample image 5; after TEOS removal, close-up .. 17
Fig. 12. Sample image 2; after Al removal ... 18
Fig. 13. Sample image 4; after Al removal ... 18
Fig. 14. Sample image 5; after Al removal ... 19
Fig. 15. Sample image 10; after Al removal ... 19
Fig. 16. Device 4 after Al removal ... 20
Fig. 17. Device 7 after Al removal ... 20
Fig. 18. Device 5 after TEOS removal .. 20
Fig. 19. Device 10 following decapsulation ... 20
Fig. 20. Device 2 after Al, barrier and TEOS etch ... 21
Fig. 21. Device 3 after Al, barrier and TEOS etch ... 21
Fig. 22. Device 4 after Al, barrier and TEOS etch ... 22
Fig. 23. Sample image 1 .. 23
Fig. 24. Sample image 2 .. 23
Fig. 25. Sample image 3 .. 23
Fig. 26. Sample image 4 .. 23
Fig. 27. Sample image 41; 0.1 mH .. 24
Fig. 28. Sample image 43; 0.1 mH .. 24
Fig. 29. Sample image 51; 15 mH .. 25
Fig. 30. Sample image 55; 15 mH .. 25
Fig. 31. Sample image 6; 0.1 mH .. 26
Fig. 32. Sample image 8; 0.1 mH .. 26
Fig. 33. Sample image 18; 3.5 mH .. 27
Fig. 34. Sample image 20; 3.5 mH .. 27
Fig. 35. Device 1 upper (orange) hotspot ... 28
Fig. 36. Device 1 lower (orange) hotspot ... 28
Fig. 37. Device 4 upper (orange) hotspot ... 28
Fig. 38. Device 4 lower (orange) hotspot ... 28
Fig. 39. Device 6 (teal) hotspot ... 29
Fig. 40. Device 7 (teal) hotspot ... 29
Fig. 41. Device 8 (teal) hotspot ... 29
Fig. 42. Device 9 (teal) hotspot ... 29
Fig. 43. Device 1 ... 30
Fig. 44. Device 2 ... 30
Fig. 45. Device 3 ... 31
Fig. 46. Sample image 1: 15 V, 3 A .. 32
Fig. 47. Sample image 2: 15 V, 3 A .. 32
Fig. 48. Sample image 3: 15 V, 3 A .. 32
Fig. 49. Sample image 4: 15 V, 3 A .. 32
Fig. 50. Sample image 1: 30 V, 1.5 A .. 33
Fig. 51. Sample image 2: 30 V, 1.5 A .. 33
Fig. 52. Sample image 3: 30 V, 1.5 A .. 33
Fig. 53. Sample image 4: 30 V, 1.5 A .. 33
Fig. 54. Sample image 61; 20 V, 3.5 A, 30 ms .. 34
Fig. 55. Sample image 62; 20 V, 3.5 A, 30 ms .. 34
Fig. 56. Sample image 63; 20 V, 3.5 A, 30 ms .. 35
Fig. 57. Sample image 64; 20 V, 3.5 A, 30 ms .. 35
Fig. 58. Sample image 66; 20 V, 3 A, 60 ms .. 35
Fig. 59. Sample image 67; 20 V, 3 A, 60 ms .. 35
Fig. 60. Sample image 68; 20 V, 3 A, 60 ms .. 36
Fig. 61. Sample image 69; 20 V, 3 A, 60 ms .. 36
Fig. 62. Sample image 71; 30 V, 1.4 A, 60 ms ... 36
Fig. 63. Sample image 72; 30 V, 1.4 A, 60 ms ... 36
Fig. 64. Sample image 73; 30 V, 1.4 A, 60 ms ... 36
Fig. 65. Sample image 74; 30 V, 1.4 A, 60 ms ... 36
Fig. 66. Sample image 1; 15 V, 2.5 A, 100 ms ... 37
Fig. 67. Sample image 2; 15 V, 2.5 A, 100 ms ... 37
Fig. 68. Sample image 4; 15 V, 2.5 A, 100 ms ... 38
Fig. 69. Sample image 5; 15 V, 2.5 A, 100 ms ... 38
Fig. 70. Sample image 11; 15 V, 5 A, 1 ms .. 38
Fig. 71. Sample image 12; 15 V, 5 A, 1 ms .. 38
Fig. 72. Sample image 13; 15 V, 5 A, 1 ms .. 39
Fig. 73. Sample image 14; 15 V, 5 A, 1 ms 39
Fig. 74. Device 5 upper (orange) hotspot 40
Fig. 75. Device 6 lower (orange) hotspot 40
Fig. 76. Device 7 upper (orange) hotspot 40
Fig. 77. Device 8 lower (orange) hotspot 40
Fig. 78. Device 1 (teal) hotspot 41
Fig. 79. Device 2 (teal) hotspot 41
Fig. 80. Device 3 (teal) hotspot 41
Fig. 81. Device 4 (teal) hotspot 41
Fig. 82. Sample image 1; 15 V, 2.5 A, 100 ms 42
Fig. 83. Sample image 2; 15 V, 2.5 A, 100 ms 42
Fig. 84. Sample image 4; 15 V, 2.5 A, 100 ms 43
Fig. 85. Sample image 1 44
Fig. 86. Sample image 2 44
Fig. 87. Sample image 3 44
Fig. 88. Sample image 4 44
Fig. 89. Sample image 6 45
Fig. 90. Sample image 7 45
Fig. 91. Sample image 8 45
Fig. 92. Sample image 9 45
Contents

1 Introduction ... 2
1.1 ESD - Human body model 3
1.1.1 EOS method ..3
1.1.2 Fault condition simulated3
1.1.3 Signature ...3
1.2 Unclamped Inductive Switching (UIS) (Avalanche or Ruggedness) 6
1.2.1 EOS method ..6
1.2.2 Fault condition simulated6
1.2.3 Signature ..6
1.3 Linear mode operation ... 9
1.3.1 EOS method ...9
1.3.2 Fault condition simulated9
1.3.3 Signature ..9
1.4 Over-current ..13
1.4.1 EOS method ..13
1.4.2 Fault condition simulated13
1.4.3 Signature ..13
2 Appendices ..15
2.1 Human Body Model EOS of BUK9508-55A 15
2.2 Human Body Model EOS of BUK9Y40-55B 17
2.3 Human Body Model EOS of PSMN011-30YL 18
2.4 Human Body Model EOS of PSMN8R5-100PSF 19
2.5 Human Body Model EOS of BUK7Y3R0-40H21
2.6 Unclamped Inductive Switching EOS of BUK7L06-34ARC ...23
2.7 Unclamped Inductive Switching EOS of BUK9Y40-55B ...24
2.8 Unclamped Inductive Switching EOS of PSMN7R0-30YL ...26
2.9 Unclamped Inductive Switching EOS of PSMN8R5-100PSF ...27
2.10 Unclamped Inductive Switching EOS of BUK7Y3R0-40H ...30
2.11 Linear mode EOS of BUK7L06-34ARC 32
2.12 Linear mode EOS of BUK9Y40-55B34
2.13 Linear mode EOS of PSMN7R0-30YL37
2.14 Linear mode EOS of PSMN8R5-100PSF 39
2.15 Linear mode EOS of BUK7Y3R0-40H42
2.16 Over-current EOS of BUK7L06-34ARC44
2.17 Over-current EOS of PSMN7R0-30YL45
3 Abbreviations .. 46
4 Revision history ..46
5 Legal information ..47