74AHC594-Q100; 74AHCT594-Q100

Rev. 6 - 7 March 2024

1. General description

The 74AHC594-Q100; 74AHCT594-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-Power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7-A.
The 74AHC594-Q100; 74AHCT594-Q100 is an 8-bit, non-inverting, serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (SHCP and STCP) and direct overriding clears (SHR and STR) are provided on both the shift and storage registers. A serial output (Q7S) is provided for cascading purposes.

Both the shift and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register will always be one count pulse ahead of the storage register.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Wide supply voltage range from 2.0 V to 5.5 V
- Balanced propagation delays
- All inputs have Schmitt-trigger action
- Overvoltage tolerant inputs to 5.5 V
- High noise immunity
- CMOS low power dissipation
- 8-bit serial-in, parallel-out shift register with storage
- Independent direct overriding clears on shift and storage registers
- Independent clocks for shift and storage registers
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level A
- Input levels:
- For 74AHC594-Q100: CMOS level
- For 74AHCT594-Q100: TTL level
- ESD protection:
- HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
- CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints

3. Applications

[^0]8-bit shift register with output register

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
$\begin{aligned} & \text { 74AHC594D-Q100 } \\ & \text { 74AHCT594D-Q100 } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
$\begin{aligned} & \text { 74AHC594PW-Q100 } \\ & \text { 74AHCT594PW-Q100 } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
$\begin{aligned} & \text { 74AHC594BQ-Q100 } \\ & \text { 74AHCT594BQ-Q100 } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

5. Functional diagram

Fig. 1. Functional diagram

Fig. 2. Logic symbol

Fig. 3. IEC logic symbol

Fig. 4. Logic diagram

6. Pinning information

6.1. Pinning

BQ package SOT763-1 (DHVQFN16) Transparent top view (1) This is not a ground pin. There is no electrical or mechanical requirement to solder the pad. In case soldered, the solder land should remain floating or connected to GND.		

6.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	$15,1,2,3,4,5,6,7$	parallel data output
GND	8	ground (0 V)
Q7S	9	serial data output
SHR	10	shift register reset input (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
STR	13	storage register reset input (active LOW)
DS	14	serial data input
VCC	16	supply voltage

7. Functional description

Table 3. Function table
$H=$ HIGH voltage state; L = LOW voltage state; $\uparrow=$ LOW to HIGH transition; $X=$ don't care; NC = no change.

| Input | | | Output | | | | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SHCP | STCP | SHR | STR | DS | Q7S | Qn | |
| X | X | L | X | X | L | NC | a LOW-state on SHR only affects the shift register |
| X | X | X | L | X | NC | L | a LOW-state on STR only affects the storage register |
| X | \uparrow | L | H | X | L | L | empty shift register loaded into storage register |
| \uparrow | X | H | X | H | Q6S | NC | logic HIGH level shifted into shift register stage 0. Contents of all
 shift register stages shifted through, e.g. previous state of stage 6
 (internal Q6S) appears on the serial output (Q7S). |
| X | \uparrow | H | H | X | NC | QnS | contents of shift register stages (internal QnS) are transferred to
 the storage register and parallel output stages |
| \uparrow | \uparrow | H | H | X | Q6S | QnS | contents of shift register shifted through; previous contents of the
 shift register is transferred to the storage register and the parallel
 output stages |

Fig. 5. Timing diagram

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		-0.5	+7.0	V
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$	$[1]$	-20	-
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$[1]$	-20	mA
I_{O}	output current	$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$		-20	mA
I_{CC}	supply current		-25	mA	
$\mathrm{I}_{\mathrm{GND}}$	ground current		-	+75	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-75	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-65	+150	${ }^{\circ} \mathrm{C}$

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For SOT109-1 (SO16) package: $P_{\text {tot }}$ derates linearly with $12.4 \mathrm{~mW} / \mathrm{K}$ above $110{ }^{\circ} \mathrm{C}$.
For SOT403-1 (TSSOP16) package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8.5 \mathrm{~mW} / \mathrm{K}$ above $91^{\circ} \mathrm{C}$.
For SOT763-1 (DHVQFN16) package: $P_{\text {tot }}$ derates linearly with $11.2 \mathrm{~mW} / \mathrm{K}$ above $106{ }^{\circ} \mathrm{C}$.

8-bit shift register with output register

9. Recommended operating conditions

Table 5. Operating conditions

Symbol	Parameter	Conditions	74AHC594-Q100			74AHCT594-Q100			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
V_{1}	input voltage		0	-	5.5	0	-	5.5	V
V_{0}	output voltage		0	-	V_{CC}	0	-	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	100	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	20	-	-	20	ns / V

10. Static characteristics

Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
74AHC594-Q100										
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	1.5	-	1.5	-	V
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	2.1	-	-	2.1	-	2.1	-	V
		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	3.85	-	-	3.85	-	3.85	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	-	0.5	-	0.5	V
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	-	-	0.9	-	0.9	-	0.9	V
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	1.65	-	1.65	-	1.65	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}								
		$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.9	3.0	-	2.9	-	2.9	-	V
		$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{C C}=3.0 \mathrm{~V}$	2.58	-	-	2.48	-	2.40	-	V
		$\mathrm{I}_{\mathrm{O}}=-8.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.94	-	-	3.80	-	3.70	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}								
		$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0	0.1	-	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0	0.1	-	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0	0.1	-	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.36	-	0.44	-	0.55	V
		$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.36	-	0.44	-	0.55	V
1	input leakage current	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	0.1	-	1.0	-	2.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	4.0	-	40	-	80	$\mu \mathrm{A}$
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	3	10	-	10	-	10	pF

8-bit shift register with output register

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
74AHCT594-Q100										
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}								
		$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$\mathrm{I}_{\mathrm{O}}=-8.0 \mathrm{~mA} ; \mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.94	-	-	3.80	-	3.70	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}								
		$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0	0.1	-	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.36	-	0.44	-	0.55	V
1	input leakage current	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	0.1	-	1.0	-	2.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	4.0	-	40	-	80	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other pins at V_{CC} or GND ; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	3	10	-	10	-	10	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC594-Q100										
$\mathrm{t}_{\text {PLH }}$	LOW to HIGH propagation delay	SHCP to Q7S; see Fig. 6								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.2	8.5	2.2	9.7	2.2	10.6	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.4	11.5	3.0	13.2	3.0	14.3	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.8	6.3	1.7	7.2	1.7	7.8	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	4.8	8.0	2.4	9.1	2.4	10.0	ns
		STCP to Qn; see Fig. 7								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.1	8.3	2.3	9.5	2.3	10.6	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.3	11.9	3.3	13.6	3.3	14.7	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.5	5.7	1.8	6.5	1.8	7.1	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	4.8	7.8	2.6	9.0	2.6	9.8	ns

8-bit shift register with output register

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	SHCP to Q7S; see Fig. 6								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.5	8.9	2.3	10.2	2.3	11.0	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.4	12.1	3.0	13.9	3.0	15.1	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.1	6.7	1.9	7.6	1.9	8.2	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.4	8.8	2.5	10.1	2.5	11.0	ns
		STCP to Qn; see Fig. 7								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.5	9.1	2.4	10.4	2.4	11.3	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.3	12.0	3.2	13.8	3.2	15.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.7	6.0	1.9	6.9	1.9	7.5	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.2	8.5	2.6	9.7	2.6	10.5	ns
		SHR to Q7S; see Fig. 10								
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.7	9.5	2.3	10.8	2.3	11.7	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.5	12.2	3.6	14.0	3.6	15.2	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.1	6.7	2.0	7.6	2.0	8.2	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.4	8.8	2.8	10.1	2.8	11.0	ns
		STR to Qn; see Fig. 9								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	5.8	9.6	2.8	11.0	2.8	12.0	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	7.7	12.5	3.8	14.4	3.8	15.6	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.1	7.2	2.2	8.2	2.2	8.9	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.4	9.4	3.0	10.7	3.0	11.6	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	SHCP or STCP; see Fig. 6 and Fig. 7								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	80	125	-	70	-	65	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	90	170	-	80	-	70	-	MHz
t_{w}	pulse width	SHCP and STCP HIGH or LOW; see Fig. 6 and Fig. 7								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	6.0	-	-	6.5	-	7.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	5.5	-	-	6.0	-	6.5	-	ns
		SHR and STR HIGH or LOW; see Fig. 10 and Fig. 9								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	5.0	-	-	5.0	-	5.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	5.0	-	-	5.2	-	5.7	-	ns

8-bit shift register with output register

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t_{su}	set-up time	DS to SHCP; see Fig. 8								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.5	-	-	3.5	-	4.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	3.0	-	-	3.0	-	3.5	-	ns
		SHR to STCP; see Fig. 11								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	8.0	-	-	9.0	-	9.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	5.0	-	-	5.0	-	5.5	-	ns
		SHCP to STCP; see Fig. 7								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	8.0	-	-	8.5	-	9.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	5.0	-	-	5.0	-	5.5	-	ns
t_{n}	hold time	DS to SHCP; see Fig. 8								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.5	-	-	1.5	-	2.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	2.0	-	2.5	-	ns
$\mathrm{t}_{\text {rec }}$	recovery time	SHR to SHCP; see Fig. 10								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	4.2	-	-	4.8	-	5.3	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.9	-	-	3.3	-	3.8	-	ns
		STR to STCP; see Fig. 9								
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	4.6	-	-	5.3	-	5.8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	3.2	-	-	3.7	-	4.3	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} \quad$ [2]	-	55	-	-	-	-	-	pF
74AHCT594-Q100; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V										
$\mathrm{t}_{\text {PLH }}$	LOW to HIGH propagation delay	SHCP to Q7S; see Fig. 6								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.8	6.3	1.7	7.2	1.7	7.8	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	4.8	8.0	2.2	9.1	2.2	9.9	ns
		STCP to Qn; see Fig. 7								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.5	5.7	1.8	6.5	1.8	7.1	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	4.6	7.7	2.6	8.8	2.6	9.6	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	SHCP to Q7S; see Fig. 6								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.1	6.7	1.8	7.6	1.8	8.3	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.4	8.8	2.4	10.1	2.4	11.0	ns
		STCP to Qn; see Fig. 7								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	3.7	6.1	1.9	6.9	1.9	7.2	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.2	8.5	2.6	9.7	2.6	10.5	ns
		SHR to Q7S; see Fig. 10								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.3	7.0	2.4	8.0	2.4	8.7	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.4	8.8	2.7	10.1	2.7	11.0	ns
		STR to Qn; see Fig. 9								
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	4.5	7.4	2.3	8.4	2.3	9.2	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	5.7	9.4	3.1	10.7	3.1	11.7	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	SHCP or STCP; see Fig. 6 and Fig. 7	90	160	-	80	-	70	-	MHz

8-bit shift register with output register

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t_{w}	pulse width	SHCP and STCP HIGH or LOW; see Fig. 6 and Fig. 7	5.5	-	-	6.0	-	6.5	-	ns
		SHR and STR HIGH or LOW; see Fig. 10 and Fig. 9	5.2	-	-	5.5	-	6.0	-	ns
$\mathrm{t}_{\text {su }}$	set-up time	DS to SHCP; see Fig. 8	3.0	-	-	3.0	-	3.5	-	ns
		SHR to STCP; see Fig. 11	5.0	-	-	5.0	-	5.5	-	ns
		SHCP to STCP; see Fig. 7	5.0	-	-	5.0	-	5.5	-	ns
t_{h}	hold time	DS to SHCP; see Fig. 8	2.0	-	-	2.0	-	2.5	-	ns
$\mathrm{t}_{\text {rec }}$	recovery time	SHR to SHCP; see Fig. 10	2.9	-	-	3.3	-	3.8	-	ns
		STR to STCP; see Fig. 9	3.4	-	-	3.8	-	4.3	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} \quad$ [2]	-	55	-	-	-	-	-	pF

[1] Typical values are measured at nominal supply voltage ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$).
[2] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

11.1. Waveforms and test circuit

Measurement points are given in Table 8.
Fig. 6. Shift register clock pulse width, maximum frequency and input to output propagation delays

Measurement points are given in Table 8.
Fig. 7. Shift register clock to storage register clock set-up time and storage clock pulse width, maximum frequency and input to output propagation delays

Measurement points are given in Table 8.
The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 8. Shift register clock to data input set-up and hold times

Measurement points are given in Table 8.
Fig. 9. Storage register reset pulse width, input to output propagation delay and recovery time

Measurement points are given in Table 8.
Fig. 10. Shift register reset pulse width, input to output propagation delay and recovery time

Measurement points are given in Table 8.
Fig. 11. Shift register reset to storage register clock set-up time
Table 8. Measurement points

Type	Input	Output
	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$
74AHC594-Q100	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
74AHCT594-Q100	1.5 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$

For test data see Table 9.
Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator;
$C_{L}=$ Load capacitance including jig and probe capacitance.
Fig. 12. Test circuit for measuring switching times
Table 9. Test data

Type	Input	Load	Test	
	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}	
74AHC594-Q100	V_{CC}	$\leq 3.0 \mathrm{~ns}$	$15 \mathrm{pF}, 50 \mathrm{pF}$	$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$
74AHCT594-Q100	3.0 V	$\leq 3.0 \mathrm{~ns}$	$15 \mathrm{pF}, 50 \mathrm{pF}$	$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$

12. Package outline

Dimensions (inch dimensions are derived from the original mm dimensions)

Fig. 13. Package outline SOT109-1 (SO16)

Dimensions (mm are the original dimensions)

Fig. 14. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{aligned} & A^{(1)} \\ & \max . \end{aligned}$	A_{1}	b	C	$D^{(1)}$	D_{h}	$E^{(1)}$	E_{h}	e	e1	L	v	w	y	y_{1}
mm	1	$\begin{aligned} & 0.05 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.18 \end{aligned}$	0.2	$\begin{aligned} & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 2.15 \\ & 1.85 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.85 \end{aligned}$	0.5	2.5	$\begin{aligned} & 0.5 \\ & 0.3 \end{aligned}$	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				
	IEC	JEDEC	JEITA		EUROPEAN
PROJECTION	ISSUE DATE				
SOT763-1	--	MO-241	$-\ldots$	$-02-10-17$	

Fig. 15. Package outline SOT763-1 (DHVQFN16)

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT594_Q100 v. 6	20240307	Product data sheet	-	74AHC_AHCT594_Q100 v. 5
Modifications:	Fig. 13, Fig. 14: Aligned SO and TSSOP package outline drawings to JEDEC MS-012 and MO-153.			
74AHC_AHCT594_Q100 v. 5	20231009	Product data sheet		74AHC_AHCT594_Q100 v. 4
Modifications:	- Section 2: ESD specification updated according to the latest JEDEC standard.			
74AHC_AHCT594_Q100 v. 4	20210707	Product data sheet		74AHC_AHCT594_Q100 v. 3
Modifications:	- Type number 74AHCT594DB-Q100 (SOT338-1/SSOP16) removed.			
74AHC_AHCT594_Q100 v. 3	20200625	Product data sheet		74AHC_AHCT594_Q100 v. 2
Modifications:	- The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. - Legal texts have been adapted to the new company name where appropriate. - Type number 74AHC594DB-Q100 (SOT338-1/SSOP16) removed. - Section 2 updated. - Table 4: Derating values for $P_{\text {tot }}$ total power dissipation updated.			
74AHC_AHCT594_Q100 v. 2	20130704	Product data sheet	-	74AHC_AHCT594_Q100 v. 1
Modifications:	- 74AHC594DB-Q100 and 74AHCT594DB-Q100 added.			
74AHC_AHCT594_Q100 v. 1	20120712	Product data sheet	-	-

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or
equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Applications 1
4. Ordering information 2
5. Functional diagram 2
6. Pinning information 3
6.1. Pinning 3
6.2. Pin description 4
7. Functional description. 4
8. Limiting values 5
9. Recommended operating conditions 6
10. Static characteristics6
11. Dynamic characteristics 7
11.1. Waveforms and test circuit 10
12. Package outline 14
13. Abbreviations 17
14. Revision history 17
15. Legal information 18
© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 7 March 2024

[^0]: - Serial-to parallel data conversion
 - Remote control holding register

